
Research project: 

Multirotor terrain following using 

laser range finders 
 

2018-2019 academic year 

Eden Shazar 
Supervisor: Moshe Idan



1 
 

Contents 
1. Overview ................................................................................................................ 2 
2. Quadcopter model ................................................................................................... 3 
3. Control ................................................................................................................... 4 

3.1. Trim point ........................................................................................................ 4 
3.2. Controller design ............................................................................................... 4 

3.2.1. Roll controller ............................................................................................ 6 
3.2.2. Yaw controller ............................................................................................ 7 
3.2.3. Pitch controller .......................................................................................... 8 
3.2.4. Horizontal velocity controller ....................................................................... 9 
3.2.5. Vertical acceleration controller .................................................................. 10 

3.3. Final validation ................................................................................................ 11 
4. Terrain generation ................................................................................................. 12 
5. LRF simulation ....................................................................................................... 13 

5.1. LRF model ...................................................................................................... 13 
5.2. Quad tree search ............................................................................................. 13 
5.3. Ray-triangle intersections ................................................................................. 14 
5.4. Measured range .............................................................................................. 15 

6. Guidance .............................................................................................................. 16 
6.1. Ground and trajectory estimation ..................................................................... 16 
6.2. Guidance algorithm ......................................................................................... 18 
6.3. Added control ................................................................................................. 19 

6.3.1. Lateral velocity controller .......................................................................... 19 
6.3.2. Lateral acceleration controller ................................................................... 20 

6.4. Guidance implementation ................................................................................ 21 
7. Preparation for analysis ......................................................................................... 22 

7.1. Control discretization ....................................................................................... 22 
7.2. Measurement noise and installation error .......................................................... 23 
7.3. Simulation and analysis tools ............................................................................ 23 

7.3.1. Simulation tool ......................................................................................... 24 
7.3.2. Single simulation analysis tool .................................................................... 25 
7.3.3. Monte Carlo simulation analysis tool .......................................................... 26 

8. Example results ..................................................................................................... 27 
8.1. Single simulation results ................................................................................... 28 
8.2. Monte Carlo simulation results ......................................................................... 31 

9. Conclusion ............................................................................................................ 34 
References ................................................................................................................ 35 
Appendix A ................................................................................................................ 36 
 



2 
 

1. Overview 
This research aims to examine the feasibility of terrain following guidance and control for a 

multirotor over non-planar three-dimensional terrain using laser range finder (LRF) 

measurements alone. As a starting point, it is assumed the vehicle’s attitude is stabilized, and 

its horizontal velocity is controlled about a constant velocity trim point. The guidance 

algorithm to be implemented is a simplified version of the one proposed by Ratnoo, Shima et 

al. [1], and expanded upon by Ratnoo et al [2]. The work is based on previous research done 

by A. Shender and M. Idan [3], in which the two-dimensional case was studied. 

The work was carried out over the course of two semesters. The first semester was focused 

on basic infrastructure: 

• A dynamic model of a quadcopter. 

• Random terrain generation 

• LRF simulation. 

The second semester expanded upon the first to complete the simulation and analysis 

software needed for future work: 

• The Ratnoo guidance algorithm was simplified in order to test for its feasibility with 

limited data or conditions and integrated in the simulation. 

• The control has been discretized and simulation made hybrid (continuous plant; 

discrete hardware). 

• Measurement noise was added. 

• All existing software was wrapped with graphical applications to be used for statistical 

and parametric analysis. 

As per the above, the work is presented in chronological order with the first semester 

consisting of sections 2-5 and the second of sections 6-8. At the end of the project, this 

simulation environment was handed off to serve as the basis of a future research project. 

  



3 
 

2. Quadcopter model 
The dynamic model of the quadcopter was implemented using the equations and parameters 

described by Luukkonnen T. [4], where the only aerodynamic effect on the quadcopter taken 

into account (other than the basic rotor lift and drag) is a drag force scaling linearly with 

velocity. The body axes were rotated about the 𝑧𝐵 axis by −45° such that the quadcopter flies 

in an X configuration rather than a + configuration. The parameters used are listed in Table 1. 

The following are the derived 6DOF equations. The positional dynamics are given by: 

(1) [

𝑥̈

𝑦̈

𝑧̈
] = −𝑔 [

0

0

1
] +

𝑇

𝑚
[

C(𝜓) S(𝜃)C(𝜙) + S(𝜓) S(𝜙)

S(𝜓) S(𝜃)C(𝜙) − C(𝜓) S(𝜙)

C(𝜃) C(𝜙)
] −

1

𝑚
[

𝐴𝑥 0 0

0 𝐴𝑦 0

0 0 𝐴𝑧

] [

𝑥̇

𝑦̇

𝑧̇
]  

where 𝑥, 𝑦 and 𝑧 are the vehicle’s position coordinates in an inertial frame, 𝑇 is the total rotor 

thrust, 𝜙, 𝜃 and 𝜓 Euler angles (roll, pitch and yaw respectively), and C( ⋅ ) and S( ⋅ ) are 

abbreviated cosine and sine functions respectively. The angular dynamics are given by: 

(2) 

[
 
 
 
 𝑝̇

𝑞̇

𝑟̇]
 
 
 
 

=

[
 
 
 
 
1

𝐼𝑥𝑥
⁄ 0 0

0 1
𝐼𝑦𝑦

⁄ 0

0 0 1
𝐼𝑧𝑧

⁄ ]
 
 
 
 

(

 
 

[
 
 
 
 (𝐼𝑦𝑦 − 𝐼𝑧𝑧)𝑞𝑟

(𝐼𝑧𝑧 − 𝐼𝑥𝑥)𝑝𝑞

(𝐼𝑥𝑥 − 𝐼𝑦𝑦)𝑝𝑞]
 
 
 
 

− 𝐼𝑧𝑧,𝑅  

[
 
 
 
 𝑞

−𝑝

0 ]
 
 
 
 

𝜔 +

[
 
 
 
 𝜏𝜙

𝜏𝜃

𝜏𝜓]
 
 
 
 

)

 
 

  

where 𝑝, 𝑞, and 𝑟 are the vehicle’s angular rates in body coordinates, 𝜔 = 𝜔1 − 𝜔2 + 𝜔3 −

𝜔4 is the sum of the rotors’ signed angular rates and 𝜏𝜙, 𝜏𝜃 and 𝜏𝜓 are the rotors’ moments 

about the 𝑥𝐵, 𝑦𝐵 and 𝑧𝐵 axes respectively. All other parameters appearing in equations (1) 

and (2) are described in Table 1. 

Table 1: Physical parameters used in the dynamic model 

Parameter Value Units Description 

𝑔 9.81 𝑚
𝑠2⁄  Gravitational acceleration 

𝑚 0.468 𝑘𝑔 Quadcopter mass 

𝑙 0.225 𝑚 Rotor arm length 

𝐼𝑥𝑥 4.856 × 10−3 𝑘𝑔 ⋅ 𝑚2 Moment of inertia about 𝑥𝐵 

𝐼𝑦𝑦 4.856 × 10−3 𝑘𝑔 ⋅ 𝑚2 Moment of inertia about 𝑦𝐵 

𝐼𝑧𝑧 8.801 × 10−3 𝑘𝑔 ⋅ 𝑚2 Moment of inertia about 𝑧𝐵 

𝐴𝑥 , 𝐴𝑦, 𝐴𝑧 0.25 𝑘𝑔
𝑠⁄  Drag coefficients (velocity damping) 

𝜏 0.1 𝑠 Rotor time constant 

𝑘 2.980 × 10−6 − Rotor lift coefficient 

𝑏 1.140 × 10−7 − Rotor drag coefficient 

𝐼𝑧𝑧,𝑅 3.357 × 10−5 𝑘𝑔 ⋅ 𝑚2 Rotor moment of inertia about 𝑧𝐵 

 

  



4 
 

3. Control 

3.1. Trim point 
As the flight mode of interest is maneuvering about some nominal velocity, as opposed to 

takeoff, hovering, etc., a trim point at which the vehicle is in such a steady state was found. 

The trim point was used to construct a linear model with which linear controllers were 

designed, and as the initial conditions for the simulation. 

The trim point was chosen such that the quadcopter is only rotated with positive pitch 𝜃𝑡𝑟𝑖𝑚 

and is moving at a constant velocity of 𝑉𝑡𝑟𝑖𝑚 = 4 [
𝑚

𝑠
] along the inertial 𝑥 axis. As such, the 

equilibrium equations in the inertial 𝑥𝑧 plane are given by equation (3). 

(3) {
𝑇𝑡𝑟𝑖𝑚 sin(𝜃𝑡𝑟𝑖𝑚) = 𝐷𝑡𝑟𝑖𝑚 = 𝐴𝑥𝑉𝑡𝑟𝑖𝑚

𝑇𝑡𝑟𝑖𝑚 cos(𝜃𝑡𝑟𝑖𝑚) = 𝑚𝑔
  

where 𝑇𝑡𝑟𝑖𝑚 is the total thrust supplied by the four rotors and 𝐷𝑡𝑟𝑖𝑚 is the drag force. The 

pitch is thus given by equation (4), total thrust by equation (5) and angular velocity of all four 

rotors by equation (6). Table 2 contains the results for the chosen velocity. 

(4) 𝜃𝑡𝑟𝑖𝑚 = arctan(
𝐴𝑥𝑉𝑡𝑟𝑖𝑚

𝑚𝑔
)  

(5) 𝑇𝑡𝑟𝑖𝑚 =
𝑚𝑔

cos(𝜃𝑡𝑟𝑖𝑚)
  

(6) 𝜔𝑡𝑟𝑖𝑚 = √
𝑇𝑡𝑟𝑖𝑚

4𝑘
  

 
Table 2: Trim values for 𝑉𝑡𝑟𝑖𝑚 = 4 [𝑚 𝑠⁄ ] 

Parameter Value Units Description 

𝜃𝑡𝑟𝑖𝑚 12.3° 𝑑𝑒𝑔 Pitch angle 

𝑇𝑡𝑟𝑖𝑚 4.7 𝑁 Total thrust 

𝜔𝑡𝑟𝑖𝑚 6000 𝑅𝑃𝑀 Rotor angular velocity 

 

3.2. Controller design 
In the following subsections several control loops are closed one after the other, treating the 

problem as a successive set of SISO problems. In each subsection, the linearization of the open 

loop was calculated using Simulink’s linearization tool. The controllers chosen, closed loop 

systems and their time and frequency domain characteristics are detailed. Afterwards, 

validation of the closed loop against the full non-linear simulation is presented as well as an 

examination of the control effort needed after each step. All linear systems’ results match well 

with the non-linear simulation and require reasonable control efforts. At this stage, it was 

decided arbitrarily that the following results are satisfactory, and that more complex design 

could be performed to gain better performance. 



5 
 

The loops were closed successively in the order of appearance in the following subsections 

(visualized in the following figure), such that each open loop given takes previous controllers 

into account. The root loci used to design the controllers are presented in Appendix A. 

  

𝜙 

𝜓 

𝜃 

𝜙𝑟𝑒𝑓 

𝜓𝑟𝑒𝑓 

𝑉𝑥 

𝑉𝑡𝑟𝑖𝑚 

𝑎𝑧
𝑐𝑜𝑚 𝑎𝑧

𝑒𝑟𝑟 

𝑉𝑥
𝑒𝑟𝑟

 
𝜃𝑐𝑜𝑚 𝜃𝑒𝑟𝑟 

𝜓𝑒𝑟𝑟 

𝜙𝑒𝑟𝑟 𝜏𝜙
𝑐𝑜𝑚 

𝜏𝜓
𝑐𝑜𝑚 

𝜏𝜃
𝑐𝑜𝑚 

𝑇𝑐𝑜𝑚 

𝐻
𝜙

𝜏𝜙 

𝐻
𝜓

𝜏𝜓 

𝐻𝜃

𝜏𝜃 𝐻𝑉𝑥

𝜃  

𝐻𝑎𝑧

𝑇  

Plant 

Figure 1: Series of designed SISO controllers 

𝑎𝑧 



6 
 

3.2.1. Roll controller 
Open loop: 

𝐻𝜏𝜙

𝜙 (𝑠) =
2060

𝑠2(𝑠 + 10)
 

Chosen controller – lead compensator: 

𝐻
𝜙𝑒𝑟𝑟𝑜𝑟

𝜏𝜙 (𝑠) =  0.06
𝑠 + 0.7

𝑠 + 7
 

Closed loop: 

𝐻𝜙𝑒𝑟𝑟𝑜𝑟

𝜙 (𝑠) = 126
𝑠 + 0.7

(𝑠 + 12)(𝑠 + 1.8)(𝑠2 + 3.2𝑠 + 4.1)
 

Closed loop characteristics in the frequency domain: 

𝐺𝑀 = 17.9 [𝑑𝐵]  (𝜔 = 7.62 [
𝑟𝑎𝑑

𝑠
])  ,  𝑃𝑀 = 44° (𝜔𝑐 = 1.83 [

𝑟𝑎𝑑

𝑠
]) 

In the time domain: 

𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 = 34.2% ,  𝑡𝑠
2% = 3.55 [𝑠] ,  𝑡𝑦𝑝𝑒 𝐼𝐼 

Validation using step input: 

The above results, though exhibiting high overshoot, represent the best performance that was 

achieved using a simple lead compensator. 

  

Figure 2: Roll controller validation 



7 
 

3.2.2. Yaw controller 
Open loop: 

𝐻𝜏𝜓

𝜓 (𝑠) =
1160

𝑠2(𝑠 + 10)
 

Chosen controller – lead compensator: 

𝐻
𝜓𝑒𝑟𝑟𝑜𝑟

𝜏𝜓 (𝑠) =  0.11
𝑠 + 0.7

𝑠 + 7
 

Closed loop: 

𝐻𝜓𝑒𝑟𝑟𝑜𝑟

𝜓 (𝑠) = 130
𝑠 + 0.7

(𝑠 + 12)(𝑠 + 1.6)(𝑠2 + 3.4𝑠 + 4.7)
 

Closed loop characteristics in the frequency domain: 

𝐺𝑀 = 17.7 [𝑑𝐵]  (𝜔 = 7.62 [
𝑟𝑎𝑑

𝑠
])  ,  𝑃𝑀 = 43.9° (𝜔𝑐 = 1.87 [

𝑟𝑎𝑑

𝑠
]) 

In the time domain: 

𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 = 34.3% ,  𝑡𝑠
2% = 3.5 [𝑠] ,  𝑡𝑦𝑝𝑒 𝐼𝐼 

Validation using step input: 

The above results, though exhibiting high overshoot, represent the best performance that was 

achieved using a simple lead compensator. 

  

Figure 3: Yaw controller validation 



8 
 

3.2.3. Pitch controller 
Open loop: 

𝐻𝜏𝜃
𝜃 (𝑠) =

2060

𝑠2(𝑠 + 10)
 

Chosen controller – lead network: 

𝐻𝜃𝑒𝑟𝑟𝑜𝑟

𝜏𝜃 (𝑠) =  5.8
(𝑠 + 10)(𝑠 + 3)

(𝑠 + 50)(𝑠 + 30)
 

Closed loop: 

𝐻𝜃𝑒𝑟𝑟𝑜𝑟

𝜃 (𝑠) = 11900
(𝑠 + 10)(𝑠 + 3)

(𝑠 + 57)(𝑠 + 10)(𝑠 + 7.9)(𝑠2 + 15𝑠 + 79)
 

Closed loop characteristics in the frequency domain: 

𝐺𝑀 = 18.6 [𝑑𝐵]  (𝜔 = 35.5 [
𝑟𝑎𝑑

𝑠
])  ,  𝑃𝑀 = 45.4° (𝜔𝑐 = 8.04 [

𝑟𝑎𝑑

𝑠
]) 

In the time domain: 

𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 = 32.5% ,  𝑡𝑠
2% = 0.839 [𝑠] ,  𝑡𝑦𝑝𝑒 𝐼𝐼 

Validation using step input, smoothed with a prefilter to avoid unrealistic control effort as a 

pure step input leads to a large initial spike in rotor angular velocity: 

A second order controller was used at this stage, as opposed to the first order roll controller, 

to achieve faster response – initial testing was limited to the straight trajectory (2D) case.  

Figure 4: Pitch controller validation 



9 
 

3.2.4. Horizontal velocity controller 
Open loop: 

𝐻𝜃𝑐𝑜𝑚

𝑉𝑥 (𝑠) =
116000(𝑠 + 3)

(𝑠 + 57)(𝑠 + 7.9)(𝑠 + 0.5)(𝑠2 + 15𝑠 + 79)
 

Chosen controller – PI: 

𝐻𝑉𝑥,𝑒𝑟𝑟𝑜𝑟

𝜃𝑐𝑜𝑚 (𝑠) =  0.22
𝑠 + 2

𝑠
 

Closed loop: 

𝐻𝑉𝑥,𝑒𝑟𝑟𝑜𝑟

𝑉𝑥 (𝑠) = 25700
(𝑠 + 3)(𝑠 + 2)

(𝑠 + 57)(𝑠 + 14)(𝑠2 + 3.1𝑠 + 4.2)(𝑠2 + 6.3𝑠 + 45)
 

Closed loop characteristics in the frequency domain: 

𝐺𝑀 = 11.2 [𝑑𝐵]  (𝜔 = 9.43 [
𝑟𝑎𝑑

𝑠
])  ,  𝑃𝑀 = 54.1° (𝜔𝑐 = 3.22 [

𝑟𝑎𝑑

𝑠
]) 

In the time domain: 

𝑃𝑂 = 19.75% ,  𝑡𝑠
2% = 2.272 [𝑠] ,  𝑡𝑦𝑝𝑒 𝐼 

Validation using step input, smoothed with a prefilter to avoid unrealistic control effort as a 

pure step input leads to a large initial spike in rotor angular velocity: 

  

Figure 5: Horizontal velocity controller validation 



10 
 

3.2.5. Vertical acceleration controller 
Open loop: 

𝐻𝑇
𝑎𝑧(𝑠) =

21𝑠

(𝑠 + 10)(𝑠 + 0.5)
 

Chosen controller – double PI: 

𝐻𝑎𝑧,𝑒𝑟𝑟𝑜𝑟
𝑇 (𝑠) =  0.4

(𝑠 + 1)(𝑠 + 4)

𝑠2
 

Closed loop: 

𝐻𝑎𝑧,𝑒𝑟𝑟𝑜𝑟

𝑎𝑧 (𝑠) = 8.4
(𝑠 + 1)(𝑠 + 4)

(𝑠 + 16)(𝑠2 + 2.8𝑠 + 2.1)
 

Closed loop characteristics in the frequency domain: 

𝐺𝑀 = ∞ ,  𝑃𝑀 = 109° (𝜔𝑐 = 4.76 [
𝑟𝑎𝑑

𝑠
]) 

In the time domain: 

𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 = 3.26% ,  𝑡𝑠
2% = 2.67 [𝑠] ,  𝑡𝑦𝑝𝑒 𝐼 

Validation using step input, where the rotors do not reach steady state as it takes an increasing 

amount of thrust to overcome drag at higher speeds: 

As this controller is to serve the guidance algorithm for height tracking, the overshoot was 

made sure to be kept low, and rise time short. 

Figure 6: Vertical acceleration controller validation 



11 
 

3.3. Final validation 
After having closed all loops, system response and control effort were tested first for a hand-

built, irregular vertical acceleration command. Afterwards, random vertical acceleration and 

forward velocity signals were input. In both cases the signals were tracked well and the control 

efforts exerted were reasonable. 

 

Figure 7: Final validation – hand-built signal 

Figure 8: Final validation – random signal 



12 
 

4. Terrain generation 
The improved Perlin noise algorithm [5] was chosen to be used for random generation of the 

terrain, as it is easy to implement, customize, and it is widely used to generate organic-

seeming noise. The algorithm can theoretically be generalized to generate infinite terrain of 

the same characteristics as needed during simulation, though this feature was not 

implemented.  

In this work Perlin noise is used to generate a matrix of height (𝑧) values corresponding to 

evenly spaced 𝑥𝑦 coordinates. A small shortcoming of this method is the inability to model 

overhangs, though this was deemed to be of little consequence for the purpose of this 

research. 

In order to achieve complex terrain, several noise maps are generated. Those maps differ by 

the scale of the noise, often called the frequency of the noise: lower frequency noise results 

in larger structures with lower detail, and vice versa. Variation of the frequencies used, as well 

as simple mathematical operations on the resulting heightmap, allow customization of the 

generated terrain. A sample generated heightmap can be seen in Figure 9 (colors chosen for 

dramatic effect). 

  

Figure 9: Example of generated heightmap 



13 
 

5. LRF simulation 
In order to simulate the measurement of an LRF, whose laser ray is modeled as a vector that 

originates at the LRF (temporal) location and points in a given direction relative to the inertial 

frame, a ray-mesh intersection calculation algorithm was implemented based on the work of 

Sjöstrand T. [6]. The calculation steps are outlined in the following subsections. 

5.1. LRF model 

The position of an LRF is defined in the body frame as [𝑥, 𝑦, 𝑧]𝐿𝑅𝐹,𝐵
𝑇

, and its pointing direction 

by two Euler angles 𝜃𝐿𝑅𝐹 and 𝜓𝐿𝑅𝐹 (elevation and azimuth respectively). The inertial position 

of the LRF at a given time step 𝑡 is then given by: 

(7) [

𝑥(𝑡)

𝑦(𝑡)

𝑧(𝑡)
]

𝐿𝑅𝐹,𝐸

= 𝑫𝐸
𝐵(𝑡) [

𝑥
𝑦
𝑧
]

𝐿𝑅𝐹,𝐵

+ [

𝑥(𝑡)

𝑦(𝑡)

𝑧(𝑡)
]

𝑣,𝐸

  

where 𝑫𝐸
𝐵(𝑡) is the inertial-to-body rotation matrix at time 𝑡, calculated using the vehicle’s 

own Euler angles, subscripts ( ⋅ )⋅,𝐵 and ( ⋅ )⋅,𝐸 denote body and inertial frames respectively, 

and subscript ( ⋅ )𝑣,⋅ denotes the vehicle. The LRF’s pointing direction in the body frame is the 

forward unit vector 𝑥𝐵,𝐵 rotated by 𝜃𝐿𝑅𝐹 (about the 𝑦𝐵 axis) and 𝜓𝐿𝑅𝐹 (about the 𝑧𝐵 axis) in a 

𝑧-𝑦 order, and is given by: 

(8) 𝑥𝐿𝑅𝐹,𝐵 = 𝑹𝑦(𝜃𝐿𝑅𝐹)𝑹𝑧(𝜓𝐿𝑅𝐹)𝑥̂𝐵,𝐵  

where 𝑹( ⋅ ) is the matrix corresponding to a rotation about the subscripted body axis by the 

given angle. The LRF’s pointing direction in the inertial frame is thus: 

(9) 𝑥𝐿𝑅𝐹,𝐸(𝑡) = 𝑫𝐸
𝐵(𝑡)𝑥𝐿𝑅𝐹,𝐵  

 

5.2. Quad tree search 
Assuming the mesh to be intersected is defined as a heightmap, meaning it is represented by 

height values corresponding to a linearly spaced 𝑥𝑦 grid, a quad tree may be defined as 

follows. Note, the above definition allows for heightmaps to be generated in any fashion, 

meaning the Perlin noise algorithm may be changed if need be. It is even possible to 

incorporate this algorithm to be used on an actual digital terrain map (DTM) readily available 

on line for various areas on the globe and at different levels of accuracy. 

• A quad is defined as a square bounding a subset (or the entirety) of the 𝑥𝑦 heightmap 

grid, where its vertices lie on points of the grid. Its size is the length of its side in units 

of the distance between two consecutive grid points. 

• The first quad is defined to bound the entire 𝑥𝑦 grid. 

• Four sub-quads are defined such that they do no overlap and their union bounds the 

entirety of the previous quad. 

• Repeat the above bullet for every quad defined, until reaching a quad of size one or a 

user-determined limit size. 



14 
 

For every quad in the quad tree, a corresponding bounding box for the section of the terrain 

encased in it is defined, essentially extruding the quad to reach the minimum and maximum 

heights in its domain. An example of the above recursive definition can be seen in Figure 10, 

where an LRF measurement is fully simulated and only the quads through which it passes are 

drawn. As the sides of these bounding boxes are parallel to the heightmap axes, it is easy to 

determine whether a given ray passes through it or not. Simple math allows efficient pruning 

of the quad tree, marking the smallest quads defined through which the ray passes, which are 

also easy to sort by the order in which the ray enters them. 

The above steps allow for a great reduction in low-level inspections of intersections with the 

terrain; the quad tree search is an analog of a binary search tree for the two-dimensional 

search case. 

 

5.3. Ray-triangle intersections 
After having found the minimal set of quads within which an intersection with the mesh might 

occur, low-level checks are performed. Considering the mesh defined by the heightmap is built 

of – and rendered graphically with – triangles whose vertices match the grid points (marked 

pink and turquoise in the following figure), testing whether the ray passes through each 

triangle is geometrically simple. Marching along the quads in the order the ray intersects 

them, and along the triangles within them similarly, guarantees the first ray-terrain 

intersection found is indeed the first point where the ray reaches the mesh. Thus, the 

marching process begins at an LRF’s location as given by equation (7) and continues in its 

pointing direction as given by equation (9). 

Figure 11 presents an example of a ray marching along sorted quads of size one, where the 

pink and turquoise triangles are the two triangles forming the surface within each quad that 

is checked until reaching the first intersection point. 

  

Figure 10: Example of recursive definition of quads 



15 
 

 

5.4. Measured range 
The range measured by the LRF, assuming an ideal measurement, is calculated as the distance 

between its origin point and the intersection point. After having calculated the LRF’s laser’s 

intersection point with the mesh, denoted [𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)]𝑔,𝐸
𝑇

, the range measurement is 

given by: 

(10) 𝑑 = ‖[

𝑥(𝑡)

𝑦(𝑡)

𝑧(𝑡)
]

𝐿𝑅𝐹,𝐸

− [

𝑥(𝑡)

𝑦(𝑡)

𝑧(𝑡)
]

𝑔,𝐸

‖  

In Figure 12, a simulation of 15 seconds of constant altitude flight (relative to the inertial 

frame, not to the ground beneath) is visualized at several points in time, where three LRFs are 

installed with Euler angles 𝜓 = −10°, 0, 10° and 𝜃 = 45°. The quadcopter is indicated by 

black lines and the laser-heightmap intersection points by red x marks. 

Figure 12: Example multiple LRF simulation 

Figure 11: Example of quad and triangle marching 



16 
 

6. Guidance 
The implemented guidance algorithm is a simplified version of the trajectory shaping method 

proposed by Ratnoo et al. [2]. 

The 3D trajectory supplied to the algorithm is a predefined 2D trajectory (in the horizontal, 

inertial plane) projected onto the terrain and raised to a constant desired altitude 𝐻 above it. 

In practice, the trajectory used by the vehicle is recalculated in this manner in real-time with 

every new measurement, to simplify the design and avoid the requirement of onboard 

memory storage and processing. This is done to test the assumption that real-time 

measurements alone are sufficient for ground estimation, and thus trajectory estimation, in 

the relevant area ahead of the vehicle. 

For the sake of simplification of real-world implementation, an attempt was made to rely on 

as partial of a navigation solution as possible for the guidance itself. Where the original 

algorithm calls for the position of a virtual target relative to the vehicle, which is integrated 

from its velocity along the required trajectory, and both the vehicle’s and target’s velocity 

directions, it was eventually decided to place the target at a constant, nominal distance from 

the vehicle and not integrate its position. 

 

6.1. Ground and trajectory estimation 
The LRF measurements are used to estimate ground height in the vicinity of the measured 

points, for calculation of the virtual target’s 3D position and velocity to be fed to the guidance 

algorithm. Several surface fitting methods were tested against one another, of which the 

following were the most prominent: 

• Cubic interpolation. 

• X and Y polynomials. 

• Biharmonic splines. 

• Thin-plate splines. 

The following attributes constituted the main considerations in choosing a method: 

• Interpolation accuracy, in which no one method seemed significantly more suitable in 

tested scenarios. 

• Extrapolation ability and accuracy, so that the estimation of the ground could be 

robust in case the desired 2D trajectory does not intersect with the (2D, top-view) 

convex hull of measured ground points. 

• Minimal number of points required, to allow for guidance without storing previously 

measured points in memory (thus always working with a small dataset), and to 

preserve the ability to test the performance of few LRFs. 

The following table compares the four methods according to the above considerations, 

omitting interpolation as the methods exhibited similar behavior in this regard. 

  



17 
 

Table 3: Surface fitting method comparison for ground estimation 

 
Cubic 

interpolation 

𝒙 and 𝒚 

polynomials 

Biharmonic 

splines 

Thin-plate 

splines 

Extrapolation 
Triangulation-

based* 

Diverges faster 

as with 

polynomial 

degrees 

increase 

Tends to 

diverge 

aggressively 

Tends to 

diverge slowly 

Number of 

points 
3 points 

Increases with 

polynomial 

degrees 

2 points 3 points 

As per the above, thin-plate splines were chosen. 

After having estimated the ground surface, the desired 2D trajectory is projected onto it and 

raised to height 𝐻 above it. The raised, 3D trajectory is fed into the guidance algorithm, where 

a virtual target is placed on it to be followed. 

The following figure visualizes the above process. The red lines represent LRF lasers, 

terminating with red dots at the measured ground points. The white, gridded surface 

represents the estimated ground in vicinity of the measured points (some of which is 

extrapolated), above which are shown the desired 3D trajectory in a black dashed line, and 

the estimated 3D trajectory in a purple dashed line. 

  

                                                           
* Triangulation can cause poor results near the edge of the convex hull of the data in cases where some 
of the data points are inside the convex hull, and not on its edge. This method does not extrapolate. 

Figure 13: Example of ground and trajectory estimation 



18 
 

6.2. Guidance algorithm 
The original trajectory shaping guidance algorithm makes use of the following equation for 

the lateral acceleration command: 

(11) 𝑎𝑐𝑚𝑑 =
𝑉𝑑

2

𝑅
(4(𝜆 − 𝛾𝑣) + 2(𝜆 − 𝛾𝑡))  

where 𝑎𝑐𝑚𝑑 is the acceleration command, 𝑉𝑑 the desired vehicle velocity, 𝑅 is the distance 

between the virtual target and the vehicle, and 𝜆, 𝛾𝑣 and 𝛾𝑡 the line-of-sight (LOS) angle, 

vehicle heading angle and target heading angle relative to some arbitrary inertial coordinate 

frame, respectively. The command is computed in the plane containing the vehicle velocity 

and LOS vectors, and is perpendicular to the vehicle velocity. 

The above calculation is performed in the horizontal and vertical planes separately to receive 

the 𝑥𝑦 and 𝑧 components of the acceleration command. This yields the following vertical 

command: 

(12) 𝑎𝑣
𝑣 =

𝑉𝑑
2

𝑅
(4(𝜃𝑙 − 𝜃𝑣) + 2(𝜃𝑙 − 𝜃𝑣))  

(13) 
𝜃𝑙 = arctan (

𝑧𝑡 − 𝑧𝑣

𝑅𝑥𝑦
)  ,  𝜃𝑣 = arctan(

𝑉𝑣𝑧

𝑉𝑣𝑥𝑦

)  ,  𝜃𝑡 = arctan(
𝑉𝑡𝑧

𝑉𝑡𝑥𝑦

) 

𝑅 = √(𝑥𝑡 − 𝑥𝑣)
2 + (𝑦𝑡 − 𝑦𝑣)

2 + (𝑧𝑡 − 𝑧𝑣)
2 

 

where 𝜃( ⋅ ) signifies an elevation angle, 𝑥( ⋅ ), 𝑦( ⋅ ) and 𝑧( ⋅ ) inertial coordinates, and 𝑉( ⋅ ) 

velocity, and subscripts 𝑙, 𝑣, and 𝑡 are LOS, vehicle and target, respectively. Similarly, the 

vertical command is: 

(14) 𝑎𝑣
ℎ =

𝑉𝑑
2

𝑅𝑥𝑦
(4(𝜓𝑙 − 𝜓𝑣) + 2(𝜓𝑙 − 𝜓𝑡))  

(15) 

𝜓𝑙 = arctan (
𝑦𝑡 − 𝑦𝑣

𝑥𝑡 − 𝑥𝑣
)  ,  𝜓𝑣 = arctan (

𝑉𝑣𝑦

𝑉𝑣𝑥

)  ,  𝜓𝑡 = arctan(
𝑉𝑡𝑦

𝑉𝑡𝑥

) 

𝑅𝑥𝑦 = √(𝑥𝑡 − 𝑥𝑣)
2 + (𝑦𝑡 − 𝑦𝑣)

2 
 

 

where 𝜓( ⋅ ) signifies an azimuth angle. Note, the calculation is presented in an inertial frame 

but is not limited to it. 

The algorithm requires the following data: 

• Target position relative to vehicle. 

• Vehicle and target velocity directions. 

The following attempts were made at simplifying the algorithm: 

• No memory: the supplied trajectory estimation is recalculated with every new 

measurement, discarding previously measured points. This negates the need to store 

and process a large amount of points, at the cost of estimation accuracy. As it did not 

seem to impact the guidance performance significantly, this method was used. 



19 
 

• Limited acceleration control: acceleration in the 𝑦𝐵 and 𝑧𝐵 axes is controlled, but in 

the 𝑥𝐵 direction velocity is stabilized, and acceleration not controlled. Assuming the 

(𝑥𝑦)𝐵 plane velocity is always in the 𝑥𝐵 direction, the 3D acceleration command 

calculated by the original algorithm will require no 𝑥𝐵 acceleration component, as it 

would be parallel to the velocity. This method was indeed implemented, as the vehicle 

remained stable and tracked tested trajectories with only these two controlled 

acceleration components. 

o In order to assume the above, another control loop is used to drive 𝑉𝑦
𝐵 to zero 

using 𝜓𝑐𝑜𝑚, meaning the multirotor yaws such that its velocity in the (𝑥𝑦)𝐵 

plane is kept predominantly in the 𝑥𝐵 direction. 

• Target movement: rather than setting the target’s velocity and integrating its position 

along the estimated trajectory, it is placed at a predefined nominal distance ahead of 

the vehicle on the estimated 3D trajectory in each time step. Assuming no memory as 

in the first bullet, this also helps avoid positional ambiguities of the target when the 

estimated trajectory is changed in every time step. This method was used as well, as 

stability and tracking were achieved with it. 

• Partial data: initially, only gyroscope measurements (angular rates and the angles 

integrated from them) were to be used. As explained further on under Guidance 

implementation, testing revealed vehicle velocity information is also necessary for 

stability. This method was thus the only discarded simplification. Note, the control 

loops require a full navigation solution, regardless of the implementation of this 

simplification. 

 

6.3. Added control 
Two new controllers were designed to support the guidance algorithm: one for lateral velocity 

𝑉𝑦
𝐵 controlled using 𝜓𝑐𝑜𝑚, as explained in subsection 6.2, and one for lateral acceleration 𝑎𝑦

𝐵 

controlled using 𝜙𝑐𝑜𝑚, serving a similar purpose to the vertical acceleration controller. The 

controllers were designed in conjunction with the implementation and testing of the guidance 

algorithms, and were ultimately validated via correct behavior of the system as a whole. As in 

chapter 3, the control loops were closed consecutively, such that each open loop given in the 

following subsections takes previous controllers into account. 

6.3.1. Lateral velocity controller 
Open loop: 

𝐻
𝜓𝑐𝑜𝑚

𝑉𝑦
𝐵

(𝑠) = 

=
−99.78 × 10−3𝑠(𝑠 + 5621)(𝑠 + 3.665)(𝑠2 + 0.7132𝑠 + 1.891)

(𝑠 + 12.1)(𝑠 + 2.237)(𝑠 + 1.369)(𝑠2 + 2.824𝑠 + 3.169)(𝑠2 + 3.545𝑠 + 5.795)
 

Note: the negative sign arises from the body frame definition; if 𝑉𝑦
𝐵 is positive, increasing 𝜓 

will yaw the quad into the direction of the (𝑥𝑦)𝐵 velocity, thus decreasing its 𝑦𝐵 component. 

  



20 
 

Chosen controller – double PI with lead compensator: 

𝐻
𝑉𝑦,𝑒𝑟𝑟𝑜𝑟

𝐵
𝜓𝑐𝑜𝑚 (𝑠) =  −0.3

(𝑠 + 1.369)(𝑠 + 2.237)(𝑠 + 1.5)

𝑠2(𝑠 + 15)
 

Closed loop: 

𝐻
𝜓𝑐𝑜𝑚

𝑉𝑦
𝐵

(𝑠) = 

=
29.93 × 10−3(𝑠 + 5621)(𝑠 + 3.665)(𝑠 + 1.369)(𝑠2 + 0.7132𝑠 + 1.891)

(𝑠 + 17.02)(𝑠 + 9.118)(𝑠 + 0.7495)(𝑠2 + 1.596𝑠 + 1.244)(𝑠2 + 4.988𝑠 + 12.09)
 

Closed loop characteristics in the frequency domain: 

𝐺𝑀 = 29.9 [𝑑𝐵]  (𝜔 = 14.1 [
𝑟𝑎𝑑

𝑠
])  ,  𝑃𝑀 = 80.5° (𝜔𝑐 = 0.489 [

𝑟𝑎𝑑

𝑠
]) 

In the time domain: 

𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 = 0 ,  𝑡𝑠
2% = 5.284 [𝑠] ,  𝑡𝑦𝑝𝑒 𝐼 

6.3.2. Lateral acceleration controller 
Open loop: 

𝐻
𝜙𝑐𝑜𝑚

𝑎𝑦
𝐵

(𝑠) = 

=
−1272.9(𝑠 + 0.7)(𝑠2 + 0.5831𝑠 + 0.3076)(𝑠2 + 3.424𝑠 + 5.033)

(𝑠 + 11.8)(𝑠 + 2.25)(𝑠2 +  1.171𝑠 + 0.5492)(𝑠2 + 1.785𝑠 + 1.205)(𝑠2 + 4.884𝑠 + 11.81)
 

Note: the negative sign arises from the body frame definition; if 𝑎𝑦
𝐵 is positive, increasing 𝜙 

will roll the quad away the direction of the body 𝑥𝑦 acceleration, thus decreasing its 𝑦 

component. 

Chosen controller – double PI with lead compensator: 

𝐻
𝑎𝑦

𝐵
𝑒𝑟𝑟𝑜𝑟

𝜙𝑐𝑜𝑚 (𝑠) =  −1.3
(𝑠 + 2.25)(𝑠 + 3)

𝑠(𝑠 + 30)
 

Closed loop: 

𝐻
𝜙𝑐𝑜𝑚

𝑎𝑦
𝐵

(𝑠) =
1654.8(𝑠 + 3)

(𝑠 + 32.46)(𝑠 + 4.618)(𝑠2 + 8.447𝑠 + 53.52)
 

Closed loop characteristics in the frequency domain: 

𝐺𝑀 = 19.1 [𝑑𝐵]  (𝜔 = 19 [
𝑟𝑎𝑑

𝑠
])  ,  𝑃𝑀 = 70.4° (𝜔𝑐 = 4.65 [

𝑟𝑎𝑑

𝑠
]) 

In the time domain: 

𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 = 1.170% ,  𝑡𝑠
2% = 4.528 [𝑠] ,  𝑡𝑦𝑝𝑒 𝐼 

  



21 
 

6.4. Guidance implementation 
The implemented algorithm makes use of equations (12)-(15), adjusted for use in body axes 

rather than an inertial frame, such that the coordinates of the vehicle are 𝑥𝑣
𝐵 = 𝑦𝑣

𝐵 = 𝑧𝑣
𝐵 = 0. 

As a result, the elevation and azimuth angles – 𝜃( ⋅ ) and 𝜓( ⋅ ), respectively – need to be 

replaced with analogous ones expressed in relation to the body frame, set apart using 

superscript ( ⋅ )𝐵. The required angles are thus: 

(16) 

𝜓𝑙
𝐵 = arctan(

𝑦𝑡
𝐵

𝑥𝑡
𝐵)  ,  𝜓𝑣

𝐵 = arctan(
𝑉𝑣𝑦

𝐵

𝑉𝑣𝑥
𝐵)  ,  𝜓𝑡

𝐵 = arctan(
𝑉𝑡𝑥

𝐵

𝑉𝑡𝑦
𝐵) 

𝜃𝑙
𝐵 = arctan(

𝑧𝑡
𝐵

𝑅𝑥𝑦
𝐵 )  ,  𝜃𝑣

𝐵 = arctan(
𝑉𝑣𝑧

𝐵

𝑉𝑣𝑥𝑦
𝐵 )  ,  𝜃𝑡

𝐵 = arctan(
𝑉𝑡,𝑧

𝐵

𝑉𝑡𝑥𝑦

𝐵 ) 

𝑅𝑥𝑦
𝐵 = √𝑥𝑡

𝐵2
+ 𝑦𝑡

𝐵2
 ,  𝑉𝑣𝑥𝑦

𝐵 = √𝑉𝑣𝑥
𝐵2

+ 𝑉𝑣𝑦
𝐵2

 ,  𝑉𝑡𝑥𝑦

𝐵 = √𝑉𝑡𝑥

𝐵2
+ 𝑉𝑡𝑦

𝐵 2 

 

An attempt was made to reduce the measured data required to angular data only, by setting 

the vehicle velocity direction to the nominal steady-state direction when following a straight 

and level trajectory: 

(17) 𝜓𝑣
𝐵 = 0 ,  𝜃𝑣

𝐵 = −𝜃𝑡𝑟𝑖𝑚  

The result was a slowly diverging oscillation in both the vertical and horizontal directions for 

very straight and level trajectories, and a quickly diverging one for any practical trajectories. 

It was concluded that the vehicle velocity terms provided necessary damping to the resulting 

dynamics. Consequently, the velocity data cannot be discarded and is assumed to be 

measured for guidance purposes. 

The desired 2D trajectory is assumed to be known in body coordinates at every time frame, 

such that its conversion from inertial to body frames need not happen onboard. This 

assumption was made as another attempt (along with those mentioned in subsection 6.2) to 

use as partial a navigation solution as possible. Should the trajectory be provided in inertial 

coordinates alone, not only would a full navigation solution be needed, but it would likely 

require GPS or vision aid. 

 

  



22 
 

7. Preparation for analysis 
In order to simulate a real-world environment, the sensor, estimation, guidance and control 

components of the simulation were discrete with a sample time of 0.01 [𝑠] (meaning the 

simulated hardware is operated at 100 [𝐻𝑧]), and the plant was simulated as continuous. The 

controllers were discretized accordingly, and Gaussian measurement noise was added to all 

measurements and LRF positions and angles, the latter representing installation errors. 

Additionally, in preparation for statistical and parametric analysis of the guidance algorithm’s 

performance, several applications were built to wrap the existing software: 

• A simulation execution tool, in which chosen parameters and settings can be set, and 

single or Monte Carlo simulations run. 

• A single simulation analysis tool. 

• A Monte Carlo simulation analysis tool. 

The applications were built with future modification in mind, and the simulation and codebase 

adjusted accordingly. 

7.1. Control discretization 
The continuous controllers presented in subsections 3.2 and 6.3 were converted to the 

following discrete controllers, operating at 100 [𝐻𝑧]: 

• Roll: 

𝐻
𝜙𝑒𝑟𝑟𝑜𝑟

𝜏𝜙 (𝑧) = 0.061
𝑧 − 0.993

𝑧 − 0.932
 

• Yaw: 

𝐻
𝜓𝑒𝑟𝑟𝑜𝑟

𝜏𝜓 (𝑧) = 5.627
(𝑧 − 0.993)(𝑧 − 0.958)

(𝑧 − 0.861)(𝑧 − 0.779)
 

• Pitch: 

𝐻𝜃𝑒𝑟𝑟𝑜𝑟

𝜏𝜃 (𝑧) = 5.755
(𝑧 − 0.984)(𝑧 − 0.869)

(𝑧 − 0.741)(𝑧 − 0.607)
 

• Forward velocity: 

𝐻𝑉𝑥,𝑒𝑟𝑟𝑜𝑟

𝜃𝑐𝑜𝑚 (𝑧) = 0.221
𝑧 − 0.980

𝑧 − 1
 

• Vertical acceleration: 

𝐻𝑎𝑧,𝑒𝑟𝑟𝑜𝑟
𝑇 (𝑧) = 0.4

(𝑧 − 0.990)(𝑧 − 0.960)

(𝑧 − 1)2
 

• Sideways velocity: 

𝐻
𝑉𝑦,𝑒𝑟𝑟𝑜𝑟

𝐵
𝜓𝑐𝑜𝑚 (𝑧) = −0.3

(𝑧 − 0.989)(𝑧2 − 1.963𝑧 + 0.963)

(𝑧 − 1)2(𝑧 − 0.861)
 

  



23 
 

• Sideways acceleration: 

𝐻
𝑎𝑦,𝑒𝑟𝑟𝑜𝑟

𝐵
𝜙𝑐𝑜𝑚 (𝑧) = −1.3

𝑧2 − 1.954𝑧 + 0.955

(𝑧 − 1)(𝑧 − 0.741)
 

 

7.2. Measurement noise and installation error 
In order to perform statistical analysis further on, Gaussian noise was added to the following 

measurements at each discrete measurement instant, some of which are unused at the 

current stage and were included to allow for future changes more easily: 

• Body acceleration 

• Body velocity 

• Inertial position 

• Euler rates 

• Euler angles 

• LRF measurements 

Normally distributed error was also added to the installation position and angles of the LRFs 

at the beginning of each simulation run. 

 

7.3. Simulation and analysis tools 
In preparation for future analytical work, several applications were constructed: 

• A simulation tool to simplify the process of simulation execution, including the setting 

of important parameters. 

• A single simulation analysis tool, providing plots relating to the vehicle’s state, control 

signals and responses, and guidance performance. 

• A Monte Carlo simulation analysis tool, providing plots of raw or statistical simulation 

data to do with guidance performance. 



24 
 

7.3.1. Simulation tool 
The simulation tool is built to allow for simple execution of Monte Carlo or single simulations. 

The following parameters and settings can be set prior to running a simulation using the 

application: 

• General 

o The output folder and name of the file in which to save the results. 

o The maximum time to be simulated in each run. 

o The amount of runs of which a Monte Carlo simulation will consist. 

o Whether one heightmap will be generated for all Monte Carlo runs or a new 

one created for each run. 

• Errors 

o Noise for each measurement or installation error can be toggled on or off. 

o The standard deviation of the Gaussian noise for each measurement or 

installation error can be set separately. 

• LRFs 

o The number of LRFs. 

o The position of each LRF in body coordinates, and its pitch and yaw relative 

to the body 𝑥 axis. 

• Terrain 

o The side length of the generated terrain. 

o The number of mesh points along the 𝑥 and 𝑦 axes. 

o The maximal height of the terrain. 

o The base frequency and number of octaves for the generation of Perlin noise. 

• Control 

o All controllers can be redefined. 

 

Figure 14: Simulation tool startup view 



25 
 

• Guidance 

o The desired altitude to be kept above the ground. 

o The distance at which the virtual target will be placed on the desired 

trajectory. 

o The desired 2D trajectory, specified as a series of (𝑥, 𝑦) waypoints in inertial 

coordinates. 

• Initial states 

o Inertial position. 

▪ The 𝑧 value can be specified either in inertial coordinates or in 

altitude above the generated ground in the initial (𝑥, 𝑦) position. 

o Inertial velocity. 

o Euler angles. 

o Angular rates (𝑝𝑞𝑟). 

o Rotor velocities. 

7.3.2. Single simulation analysis tool 

The analysis tool provides the following plots for a specified results file from a single 

simulation: 

• States as a function of time: 

o Inertial position. 

o Body velocity. 

o Body acceleration. 

o Euler angles. 

o Euler rates. 

• Control commands vs. responses as a function of time: 

o Body acceleration. 

o Body velocity. 

o Euler angles. 

o Thrust and moments. 

o Rotor velocities. 

  

Figure 15: Single simulation analysis tool 



26 
 

• Performance 

o Altitude above ground, altitude error relative to the desired height and a 

section view of the vehicle altitude and ground height as a function of time. 

o Horizontal error from the desired trajectory as a function of time and a top 

view of the quad’s horizontal position relative to the desired 2D trajectory. 

▪ Horizontal error is currently defined as the shortest distance from the 

vehicle to the desired 2D trajectory on the inertial 𝑥𝑦 plane, at a given 

time step. This definition results in a non-negative error term as only 

absolute distance is considered, and is likely to change in future work. 

o The LOS, vehicle velocity and virtual target velocity’s pitch and yaw angles, as 

presented under Guidance implementation, as a function of time. 

7.3.3. Monte Carlo simulation analysis tool 

For a specified results file from a Monte Carlo simulation, the analysis tool provides plots of 

data from all runs overlaid on one another, and plots of the mean and one standard deviation 

surrounding it, for the following: 

• Inertial position. 

• Total thrust. 

• Vertical and horizontal errors relative to the desired trajectory. 

o The horizontal error cannot be analyzed as normally distributed as it is non-

negative, meaning the mean and standard deviation values currently 

displayed for it are not useful for future work and will need to be replaced. 

  

Figure 16: Monte Carlo simulation analysis tool 



27 
 

8. Example results 
The results presented in this chapter are examples only, and were not used for any rigorous 

analytical work. They correspond to the following arbitrary parameters set in the simulation 

execution tool: 

• Simulation time of 20 [𝑠]. 

• 30 single runs within the Monte Carlo simulation. 

• Single heightmap generated for all Monte Carlo runs. 

• Errors: 

o All measurement noises and installation errors are enabled. 

o The standard deviation for each noise and error is arbitrarily equal and is as 

follows: 

𝜎𝑎𝐵
𝑚𝑒𝑎𝑠 = 0.005 [

𝑚

𝑠2]  ,  𝜎𝑉𝐵
𝑚𝑒𝑎𝑠 = 0.005 [

𝑚

𝑠
]  ,  𝜎(𝑥,𝑦,𝑧)𝐸

𝑚𝑒𝑎𝑠 = 0.005 [𝑚] 

𝜎𝜙̇,𝜃̇,𝜓̇𝑚𝑒𝑎𝑠 = 0.005 [
𝑑𝑒𝑔

𝑠
]  ,  𝜎𝜙,𝜃,𝜓𝑚𝑒𝑎𝑠 = 0.005 [𝑑𝑒𝑔] ,  𝜎𝐿𝑅𝐹𝑅

𝑚𝑒𝑎𝑠 = 0.005 [𝑚] 

 ,  𝜎𝐿𝑅𝐹(𝑥,𝑦,𝑧)𝐵
= 0.005 [𝑚] ,  𝜎𝐿𝑅𝐹𝜃,𝜓

= 0.005 [𝑑𝑒𝑔] 

• LRFs: 

o 6 LRFs are installed near the center of the quadcopter. 

o The LRF angles are spread evenly on a grid: 

𝜓𝐿𝑅𝐹 ∈ [−10,10]° ,  𝜃𝐿𝑅𝐹 ∈ [30,55]° 

• Terrain: 

o 100 [𝑚] side length. 

o 200 mesh nodes along each horizontal axis. 

o 1 [𝑚] maximum ground height (relatively flat ground). 

o Base frequency 2 (approximately 2 large peaks and troughs along each 

horizontal axis). 

o 4 octaves. 

• Control: 

o Default controllers, as described in section 3 and subsection 6.3. 

• Guidance: 

o Virtual target distance from vehicle of 12 [𝑚]. 

o Desired altitude of 15 [𝑚]. 

o A custom trajectory, deviating only slightly from 𝑥 ∈ [−50,50] , 𝑦 = 0 in its 

first half or so, as is visualized in subsection 8.1. 

• Initial states: 

o Initial position (edge of terrain, 𝑧 measured above ground): 

𝑥 = −50 [𝑚] ,  𝑦 = 0 ,  𝑧𝑎𝑏𝑜𝑣𝑒 𝑔𝑟𝑜𝑢𝑛𝑑 = 17 [𝑚] 

o Other initial states are all trim values. 

  



28 
 

8.1. Single simulation results 
The following are examples of all plots supplied by the Single simulation analysis tool. 

 

 

Figure 17: Single simulation results – inertial position 

Figure 18: Single simulation results – body velocity 

Figure 19: Single simulation results – body acceleration 



29 
 

 

 

 

 

Figure 20: Single simulation results – Euler angles 

Figure 21: Single simulation results – Euler rates 

Figure 22: Single simulation results – acceleration commands and responses 



30 
 

 

 

 

 

Figure 23: Single simulation results – velocity commands and responses 

Figure 24: Single simulation results – Euler angle commands and responses 

Figure 25: Single simulation results – thrust and moment commands and responses 



31 
 

 

 

 

8.2. Monte Carlo simulation results 
The following are examples of all plots supplied by the Monte Carlo simulation analysis tool. 

  

Figure 26: Single simulation results – rotor velocity commands and responses 

Figure 27: Monte Carlo simulation results – all run positions 



32 
 

 

 

 

Figure 28: Monte Carlo simulation results – all run total thrusts 

Figure 29: Monte Carlo simulation results – all run positional errors 

Figure 30: Monte Carlo simulation results – statistical position 



33 
 

 

 

 

 

 

  

Figure 31: Monte Carlo simulation results – statistical total thrust 

Figure 32: Monte Carlo simulation results – statistical positional errors 



34 
 

9. Conclusion 
Over the course of two semesters a full simulation environment was developed, including: 

• A quadcopter 6DOF model. 

• Control design, consisting of: 

o A constant forward velocity controller, supplying commands to an elevation 

angle controller. 

o A controller driving sideways velocity to zero, supplying commands to an 

azimuth angle controller. 

o A horizontal acceleration controller, supplying commands to a roll angle 

controller. 

o A vertical acceleration controller, making use of all four rotors 

simultaneously. 

• Customizable random terrain generation using Perlin noise. 

• Processing of terrain into a quad tree for efficient LRF simulation. 

• LRF measurement simulation. 

• Simplified Ratnoo guidance algorithm. 

• A wrapper application capable of setting parameters and running single of Monte 

Carlo simulations. 

• Two analysis applications: one for single simulations, and another for Monte Carlo 

simulations. 

This project was focused on the construction of solid infrastructure with which to carry out 

future work, which is a parametric and statistical analysis of the guidance algorithm’s 

performance in terrain following. Several points were identified for potential improvement 

ahead of this future work: 

• Better method of statistical analysis: all results are currently displayed as a function 

of time, although vehicles in different simulations in a Monte Carlo run may reach a 

given section of the trajectory at different times. Should this difference be large 

enough, comparing values between simulations at given times may provide little 

useful information. 

• Alternative calculation of horizontal error, which is currently calculated as an absolute 

value and as such cannot be analyzed as normally distributed. 

  



35 
 

References 
 

[1]  A. Ratnoo, S. Hayoun, Granot A. and Shima T., "Path following using trajectory shaping 

guidance," AIAA Journal of Guidance, Control and Dynamics, vol. 38(1), 2014.  

[2]  A. Ratnoo, A. Manjunath, P. Mehrok and R. Sharma, "Application of Virtual Target based 

Guidance Laws to Path Following of a Quadrotor UAV," in International Conference on 

Unmanned Aircraft Systems (ICUAS), Arlington, VA USA, 2016.  

[3]  A. Shender and M. Idan, "Flight at a constant distance from ground for a multirotor," 

2018. 

[4]  T. Luukkonen, "Modelling and control of quadcopter," 2011. 

[5]  K. Perlin, "Improving noise," ACM SIGGRAPH, pp. 681-682, 2002.  

[6]  T. Sjöstrand, "Efficient intersection of tterrain geometry in real-time," 2017. 

 

 

  



36 
 

Appendix A 
The following are the root loci used for the design detailed under section 3. 



37 
 

  



38 
 

 

 

 


