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Abstract

In this project the problem of carrying a single load using multiple quadrotors is being examined.
The main goal is to build a control system that will enable us to transport the load safely while
maintaining a constant altitude above the terrain. The report reviews the design of the simulation
environment - the dynamic model of the quadrotors, load and the wires connecting between the load
and the quadrotors. The report details a possible control structure for the above system. It combines
a Linear Quadratic Regulator (LQR) controller that calculates required forces and moments such
that the load will follow a certain trajectory. Then, an optimization problem is solved to divide
the burden between the available quadrotors in an efficient way while fulfilling certain constraints.
Finally, a geometric controller is developed such that each quadrotor will provide the required force.
Simulation results testing the suggested control structure under different scenarios with and without
disturbances are included. The work presented in this project provides the infrastructure for future
research in the field of terrain following - specifically implementing a terrain following ability on a
multi-UAV system.

1 Introduction

The subject of load transportation using a flock of unmanned aerial vehicles (UAVs) has been widely
studied and developed in recent years, [1–4]. We will focus on using quadrotors as our UAVs, however,
the theory and methods can be implemented for a large variety of multi-rotor platforms. Carrying a
load using multiple small UAVs allows to significantly increase the maximum weight that can be carried
using small quadrotors. Moreover, cooperation between multiple agents, although challenging, has many
uses beside this project and thus is of great interest in the multi-rotor community.

In this project, modeling of the dynamics of a single quadrotor will be reviewed, followed by a model
of a load attached to multiple quadrotors. Dynamic model of the wires will also be presented. Once
we have a mathematical model for the system, a control structure that will allow the load to follow
desired trajectory will be developed. At first, a Linear Quadratic Regulator (LQR) controller is designed
to provide required forces and moments on the load center of gravity (c.g.) such that it will follow
a certain trajectory. Then, an optimization problem is solved to divide the total forces and moments
between the available quadrotors in some efficient way while maintaining certain constraints (quadrotor
separation distance, maximum force for a single quadrotor, etc.). Finally, a geometric controller for a
single quadrotor such that it will provide the required force is developed. Combining the above we get
the full control structure for the system.

The first sections of the work explain the mathematical model developed for the simulation, Then,
development of the above control structure is provided. The latter sections examine different simulation
scenarios that test the controllers with and without disturbances. The last section will conclude with a
summary of the work made in this project and a brief introduction to further research.

2 Mathematical model

In this section, mathematical equations that represent the quadrotors, load and cable dynamics will be
reviewed and developed.
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2.1 Dynamic model of the quadrotor

The dynamic model of the quadrotor was based on [5]. It should be noted that, in contrary to [5], the
body frame of each quadrotor is set to be in a X configuration and not aligned with the rotors (see
Fig. 1). The parameters of the quadrotor are given in Table 1. The equations of motion of the quadrotor

Figure 1: Quadrotor body frame coordinate system
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ṗq̇
ṙ
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Ax, Ay, Az are the drag coefficients linear in the quadrotor velocity. p, q, r are the body angular velocities.
T is the thrust generated by the rotors and τφ, τθ, τψ are the quadrotor moments around x, y and z
accordingly. m is the quadrotor mass.

At this point, the only external forces that act on the quadrotor are the gravity force, drag and the
thrust. It is assumed that the thrust and moments generated by the rotors are linear functions of the
square of the rotor spin rates ωi, i = 1, 2, 3, 4 and are expressed as{
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where k is the rotor lift constant, b is the rotor drag constant and L is the distance between a rotor and
the quadrotor c.g.. Each motor dynamics was approximated as a first order transfer function

ω

ωcom
(s) =

1

1 + τs
(5)

where τ represents the time constant of the motor. Once the load is added to the model, we insert the
forces and moments applied by the cable connected to each quadrotor as external forces and moments
and receive the following equationsẍÿ
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where ~F is the force that the cable applies on the load (opposite in sign to the force that the cable applies
on the quadrotor). Rq is the vector connecting between the quadrotor c.g. and the cable attachment
point on the quadrotor, given and fixed.

Table 1: Quadrotor parameters

Parameter Value Units Interpretation
g 9.81 m

s2 earth’s gravity
m 0.468 kg quadrotor mass
L 0.225 m distance between a rotor and the quadrotor

center of gravity
k 2.98 · 10−6 kg ·m rotor lift constant
b 1.14 · 10−7 kg ·m2 rotor drag constant
IM 3.357 · 10−5 kg ·m2 motor moment of inertia
Ix 4.856 · 10−3 kg ·m2 quadrotor moment of inertia around x
Iy 4.856 · 10−3 kg ·m2 quadrotor moment of inertia around y
Iz 8.801 · 10−3 kg ·m2 quadrotor moment of inertia around z

Ax 0.25 Ns
m quadrotor drag coefficient in the x direction

Ay 0.25 Ns
m quadrotor drag coefficient in the y direction

Az 0.25 Ns
m quadrotor drag coefficient in the z direction

τ 0.01 sec motor dynamics time constant

2.2 Dynamic model of the load

The load was modeled using the equations of motion, following the same principle as the modeling
of the quadrotor, however, without control inputs (following the fact that the load has no propulsion
mechanism). The load is affected only by external forces and moments - those that each quadrotor
applies and the ones caused by gravity and drag. The load parameters are given in Table 2.

The load equations areẍÿ
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ż

+
1

ml

n∑
i=1

~Fi (8)

τφτθ
τψ

 = Il

ṗq̇
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where ~Fi is the force cable i applies on the load (which is, in other words, the force that quadrotor i
applies). ρi, given and fixed, is the vector originating in the load c.g. and ends at the attachment point
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between the i’th cable and the load. Alx, Aly, Alz are the drag coefficients of the load and

Il =

Ilx 0 0
0 Ily 0
0 0 Ilz


is the tensor of moments of inertia of the load.

Table 2: Load and cable parameters

Parameter Value Units Interpretation
ml 0.4 kg load mass
Ilx 0.0017 kg ·m2 load moment of inertia around x
Ily 0.0057 kg ·m2 load moment of inertia around y
Ilz 0.0067 kg ·m2 load moment of inertia around z

Alx 0.3 Ns
m load drag coefficient in the x direction

Aly 0.3 Ns
m load drag coefficient in the y direction

Alz 0.3 Ns
m load drag coefficient in the z direction

Lload 0.8 m load length
Wload 0.4 m load width
Hload 0.2 m load height
` 3 m each cable length

Ks 100 N
m cable spring constant

Cd 10 kg
s cable damping constant

2.3 Wires model

Each wire connecting between each quadrotor to the load was modeled as a spring/damper system as
shown in [1]

~Fi = Fk,i + Fc,i

where

Fk,i =

{
Ks∆`i if ∆`i > 0

0 if ∆`i ≤ 0
(10)

and

Fc,i =

{
Cd ˙̀

i if ˙̀
i > 0

0 if ˙̀
i ≤ 0 or ∆`i ≤ 0

(11)

where ∆` is the extension of the cable with respect to the nominal length `. The values of Ks and Cd
displayed in Table 2 were chosen in a way that the wires will be quite stiff, but not exaggerated due to
numerical limitations.

3 Control design

This section discusses the design of the control structure for the system. During the work, many methods
and attempts to find a proper control structure were made. The main approach was to divide the problem
to three sub levels:

• On the top level we have a controller that calculates total required forces and moments such that
the load will follow a desired trajectory. For that task, a LQR controller was chosen and designed.
Other possible solution that was examined was to use Model Predictive Control (MPC). The
advantage of the MPC is that it allows to calculate directly the desired forces that each quadrotor
should provide such that it will fulfill certain constraints (minimum separation distance, maximum
force for each quadrotor etc.). However, it was found to be more complex to properly design and
limited in some aspects. Since the LQR does not include constraints, which is necessary to ensure
feasibility of the solution, we move to the next level in the control structure.
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• After receiving the total desired forces and moments, an optimization problem is solved to split
those forces and moments between the different available quadrotors. The optimization takes under
consideration relevant constraints. The solution provides the force that each quadrotor is required
to apply.

• The final level is the flight controller for each quadrotor. Here, different controllers were designed
and tested. At first, lead networks were designed. Those were proven to be stable and efficient to
control a single quadrotor with no disturbances. However, once including a disturbance they were
found to not be fast enough, hence, failed to fulfill the task. Next, PID controllers were tested
and again did not provide satisfying results. Finally, a geometric controller based on [6] and [7]
was designed and found to be fast and robust enough to fulfill the task. The prescribed geometric
controller was adjusted to provide desired forces instead of following desired states.

3.1 Load desired forces and moments controller

Given desired trajectory we want the load to follow, we will use the LQR method to calculate a required
set of forces and moments we need to apply on the load c.g. in order to follow that given trajectory.
The initial guess for the LQR weights will be chosen using Bryson rule - the first weight of each control
input or state is chosen to be one divided by the maximum acceptable error squared of that state or
input. From there the weights were tuned by trial and error until sufficient results were achieved. The
LQR gains were calculated for a simplified model which assumes the quadrotors provide immediately the
required forces, and ignores the cable dynamics.

The simplified state space equations are:

ẋ =


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0 0 0 0 0 0 0 0 0 0 0 1
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0 0 0 0 0

0 0 0 0 0 0 0
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0 0 0 0

0 0 0 0 0 0 0 0 Alz
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0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



x+
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0 0 0 0 0 0
1
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0 0 0 0 0

0 1
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0 0 0 0

0 0 1
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0 0 0

0 0 0 1
Ilx

0 0

0 0 0 0 1
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0
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

u (12)

where

x =
{
x y z φ θ ψ ẋ ẏ ż p q r

}T
(13)

u = FCG (14)

and FCG is the total required forces and moments applied on the load c.g. vector command:

FCG =



Fx
Fy
Fz
Mx

My

Mz


. (15)

As a way to try and improve the performance and robustness against disturbances of the controller,
an attempt to include integrators of the state errors and augment them to the LQR was conducted.
Indeed, it was found to provide better results and to eliminate steady state errors caused by constant
disturbances. The augmentation was conducted by summing the command of each control input as:

ui = Ki,LQR (xi, des− xi) +Ki,I

∫ t

0

(xi, des− xi) dτ (16)
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where the initial conditions were chosen to be zero and the augmentation was implemented over the
position states only. A more accurate way to apply that augmentation would be to include the integrated
error states in the state space realization and provide them with a relevant weight, then recalculate the
LQR gains. This is left for future work, for our project, we will settle for the prescribed implementation.
The calculated LQR gains for the simplified model was implemented to the full model and tested under
numerical simulations, the chosen gains and weights will be displayed in the simulation section.

3.2 Optimization and constraints

Provided with the desired total forces and moments (FCG), we now want to divide the burden in some
efficient way between our set of quadrotors under certain constraints. To do that, we will define and
solve the constrained optimization problem as described in [8]. We can present the moments and forces
each quadrotor applies on the load c.g. as

FCG,i =

{
~Fi

ρi × ~Fi

}
= Gi ~Fi, (17)

as stated before, ~Fi is the force cable i applies on the load. Gi is the geometry matrix of each quadrotor
defined as

Gi =


1 0 0
0 1 0
0 0 1
0 −ρi,z ρi,y
ρi,z 0 −ρi,x
−ρi,y ρi,x 0

 . (18)

Here, ρi,j are the components constructing the attachment point vector on the load i’th connection point,

ρi =
{
ρi,x ρi,y ρi,z

}T
. The total forces and moments applied by the quadrotors on the load c.g. are

given by

FCG = G~F =
{
G1 G2 · · · Gn

}

~F1

~F2

...
~Fn

 . (19)

As mentioned before, for a given trajectory the desired FCG (total forces and moments) is known. The
goal is to find Fi for i = 1, 2..., n in an effective way that will split the burden of the load among the
quadrotors.

We will use the least norm solution defined as

FLN = GT
(
GGT

)−1
FCG. (20)

However, we still want to apply constraints on the quadrotors. In order to include those constraints we
will use the null space of G which will be marked as GNull and the final desired forces each quadrotor
need to provide will be calculated as

~F = FLN +GNullcr. (21)

Here, cr will be the optimization parameter and will be calculated by solving the optimization problem:

min
cr

‖FLN +GNullcr‖ (22a)

subject to ~h
(
~F
)
≤ 0, (22b)

where (22b) express the various constraints on the optimization problem. Different constraints can be
considered such as:

• Safety distance between every two quadrotors.

• Keeping the cables taut at all times.
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• Maximum allowed force each quadrotor can provide.

• The pointing direction of each force is limited to a certain region relative to the load surface (to
prevent entanglement of the wires).

Constraints can be changed depending on usage and limitations of the system. Note that too strict
constraints may end up in no possible solution, therefore, one must be careful and aware of the system
limitations. The optimization problem was solved every discrete fixed time step using Matlab’s “fmincon”
function.

3.3 Geometric controller for the quadrotors

Given the desired forces each quadrotor is required to provide, we will use the geometric controller
developed in [6, 7] with a few adjustments. The desired force each quadrotor should provide will be
defined as

Fdes,i = ~Fi +

Ax 0 0
0 Ay 0
0 0 Az

ẋdesẏdes
żdes

+m

0
0
g

+m

ẍdesÿdes
z̈des

 . (23)

Here, ẋdes, ẏdes, żdes and ẍdes, ÿdes, z̈des were taken to be the desired velocities and accelerations of the
load. This is an approximation, assuming that the quadrotors are moving coherently with the load.
Since the quadrotor can only produce thrust in the body frame z direction, the commanded thrust will
be a projection of the desired force on the body frame z direction. Let us define the direction of the z
body axis of the quadrotor as

zeaxis = Dqi
e

0
0
1

 (24)

then

Fcmd,i = FTdes,iz
e
axis. (25)

The next step would be to calculate the moment commands as described in [7]. We will start by
defining the desired direction of the z body axis as

zeaxis,des =
Fdes,i
‖Fdes,i‖

. (26)

Once obtaining the desired direction of the z body axis, we are left with one redundant degree of freedom
(any direction of yeaxis,des that is orthogonal to zeaxis,des will be satisfying). We will close that degree of
freedom by arbitrarily taking the projection of the vector

xearb,des =

1
0
0

 (27)

on the orthogonal plane to zeaxis,des (under the assumption that the chosen direction is not parallel to
zeaxis,des). Thus, we receive the desired rotation matrix

Dqi
e,des =

[
yeaxis,des × zeaxis,des yeaxis,des zeaxis,des

]
(28)

where

yeaxis,des =
zeaxis,des × xearb,des
‖zeaxis,des × xearb,des‖

. (29)

The relative attitude error will be defined as

eR =
1

2

(
De
qi,desD

qi
e −De

qiD
qi
e,des

)∨
(30)
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where (·)∨ represents the “vee” map transformation from SE(3) to R3 (the inverse to the hat map). Note
that the transformation is possible since the obtained matrix is skew-symmetric.

Now calculating the angular velocity error as

eΩ =

pq
r

−De
qiD

qi
e,des

pdqd
rd

 (31)

where pd, qd, rd are the desired angular rates calculated frompdqd
rd

 =
(
De
qi,desḊ

qi
e,des

)∨
(32)

eΩ is actually the angular velocity of the rotation matrix De
qi,des

Dqi
e since

d

dt

(
De
qi,desD

qi
e

)
=
(
De
qi,desD

qi
e

)
êΩ (33)

as was shown in [7]. Next, we will consider the integral element of the attitude error with zero initial
conditions and calculate the final commanded moments as

Mcmd = −KReR −KΩeΩ −KRIeRI +

pq
r

× Iq
pq
r

 (34)

where eRI =
∫ t

0
eRdτ and the initial conditions were set to be zero. Including the integral term is a

proposition made in [9] to improve the robustness of the controller against constant disturbances and
was found useful when placing the link of each quadrotor at an offset from its c.g.. KR,KΩ and KRI

are positive constants. [7, 9] include stability proof for controllers similar to the one presented here. As
discussed, a few adjustments were made along the development, hence, more work is needed to be done
in order to prove stability of the developed controller and is not included in this work. Performance of
the controller will be tested under different simulations as part of the whole control structure forward
on.

4 Trajectory generation

In order to test the control structure for a varying trajectory, the following polynomial was constructed

s =
6

t5f
(sf − s0) t5 − 15

t4f
(sf − s0) t4 +

10

t3f
(sf − s0) t3 + s0 (35)

which provides a smooth trajectory that takes us from an initial state s0 to a final state sf in a given
desired transportation time tf . Such trajectory was calculated for each state independently. If required,
it is quite straight forward to find the derivatives of a desired state produced using the above polynomial.

5 Simulation

Using the model developed in the previous sections, a simulation of a three quadrotors configuration
connected to a load was modeled. This section will provide simulation results for different scenarios to
test the robustness and performance of the constructed control structure. The simulation parameters are
given in Table 3. Each simulation started from a hovering initial conditions calculated from an initial
run of the optimization problem, where all the initial states of the load are zero besides the height which
is set to be 1 (m):{

x y z φ θ ψ Vx Vy Vz p q r
}T

=
{

0 0 1 (m) 0 0 0 0 0 0 0 0 0
}T

.

The safety distance between every two quadrotors was chosen to be 1 m plus twice the rotor arm
length. We expect that constraint to be slightly violated during a maneuver until reaching steady state.
For most of the simulations the cables were connected at the c.g. of each quadrotor. One simulation
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where that is not the case will be displayed. The optimization problem is solved every given time step
and the calculated value is kept constant until the next iteration. The geometric controller gains and
LQR weights are given in Table 4. The corresponding calculated LQR gains are:

KLQR =


0.5 0 0 0 0 0 1.0071 0 0 0 0 0
0 0.5 0 0 0 0 0 1.0071 0 0 0 0
0 0 0.5 0 0 0 0 0 1.0071 0 0 0
0 0 0 0.8 0 0 0 0 0 0.0955 0 0
0 0 0 0 0.8 0 0 0 0 0 0.0955 0
0 0 0 0 0 0.8 0 0 0 0 0 0.0955

 (36)

Table 3: 3 quadrotors configuration simulation parameters

Parameter Value Units Interpretation

ρ1

{
0.4 0.2 0.1

}T
m load attachment points (relative to the load c.g.)

ρ2

{
0.4 −0.2 0.1

}T
m load attachment points (relative to the load c.g.)

ρ3

{
−0.4 0 0.1

}T
m load attachment points (relative to the load c.g.)

Rq1
{

0 0 0
}T

m attachment point on quadrotor (relative to the quadrotor c.g.)

Rq2
{

0 0 0
}T

m attachment point on quadrotor (relative to the quadrotor c.g.)

Rq3
{

0 0 0
}T

m attachment point on quadrotor (relative to the quadrotor c.g.)
ds 1.45 m safety distance between every set of two quadrotors
Topt 0.05 sec Optimization problem step time

Table 4: Controllers gains

Parameter Value Interpretation
QLQR diag

[
100 100 100 400 400 400 4 4 4 4 4 4

]
LQR states weights

RLQR diag
[
400 400 400 625 625 625

]
LQR control weights (first
three relate to forces, latter
three relate to moments)

NLQR 0 ∈ R12×6 LQR coupling matrix
weights

KR 1.1 Geometric controller atti-
tude error gain

KΩ 0.2 Geometric controller angu-
lar rate error gain

KRI 0.5 Geometric controller atti-
tude error integrator gain

KpI 0.075 Augmented integrated po-
sition error gains

5.1 Position and attitude maneuver

We will start off by showing a simple, no disturbance, cables connected at the quadrotors c.g. maneuver.
The maneuver begins in the prescribed initial states{

x y z φ θ ψ Vx Vy Vz p q r
}T

=
{

0 0 1 (m) 0 0 0 0 0 0 0 0 0
}T
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and ends in 

x
y
z
φ
θ
ψ
Vx
Vy
Vz
p
q
r



=



5 (m)
3 (m)
8 (m)
10◦

−10◦

70◦

0
0
0
0
0
0



,

the desired transportation time is set to be 20 seconds (after that time, the load is commanded to
maintain steady state). The trajectory is generated as described in section 4. The results are shown in
Figs. 2 to 5. As can be seen in Fig. 3, in terms of position and attitude, the tracking errors are quite small
and decay to zero after about 40 seconds. In Fig. 4 on the top graph we see that the acceleration of the
load remains smooth and moderate, no sudden impulses, however it does vibrate slowly until completely
decaying. On the middle graph we see that the rear quadrotor carries more weight than the two front
quadrotors. It makes sense considering the attachment points on the load. On the bottom graph we
see that the quadrotor separation constraints were kept during the maneuver except for a few minor
violations - less than 1% violation from the desired value. Those were taken under consideration when
choosing the required separation distances. Once reaching steady state, the constraints are maintained
and settle on a value close the the minimal bound.

Figure 2: Payload position, attitude and velocity, no disturbances simulation
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Figure 3: Payload position, attitude and velocity errors, no disturbances simulation

Figure 4: Acceleration, forces commands and separation constraints, no disturbances simulation

11



Figure 5: 3D trajectory, no disturbances simulation
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5.2 Position and attitude maneuver, cables attachment points are not at the
quadrotors c.g.

Here we analyze the simulation results for a maneuver identical to the one described in the previous case,
while the attachment point on the quadrotors was shifted from their respected c.g.’s. In particular, the
attachment points were set to be

Rq1 =
{

0.05 0.04 −0.02
}T

, Rq2 =
{
−0.02 −0.05 −0.05

}T
, Rq3 =

{
−0.04 0.05 −0.04

}T
.
(37)

The values were chosen arbitrarily in a way they will challenge the control system but still be feasible
and are given in meters. The desired transportation time is again 20 seconds. The results are shown
in Figs. 6 to 9. As can be seen in Fig. 7, in terms of position the tracking errors are inferior to the
previous case, but still satisfactory. In this case, the attitude errors are the most significant, although
they still decay after the transient, and are very small at the end of the maneuver. In Fig. 8 on the top
graph we see that the acceleration of the load is higher than in the previous simulation. On the bottom
graph we see that the violation of the minimal separation distance is much more significant than on the
previous simulation and reaches around 25% violation. This is something that should be taken under
consideration when choosing the separation distance and assessing the attachment points errors on the
quadrotors. Once reaching steady state, the constraints are maintained and settle on a value close the
the minimal bound. As expected, the system behavior is inferior to the one in the previous section,
however, the results are still satisfying.

Figure 6: Payload position, attitude and velocity, offset attachment simulation
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Figure 7: Payload position, attitude and velocity errors, offset attachment simulation

Figure 8: Acceleration, forces commands and separation constraints, offset attachment simulation
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Figure 9: 3D trajectory, offset attachment simulation
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5.3 Constant velocity maneuver with constant disturbance

For this simulation, we start from the rest hovering initial conditions again. At time t = 1 (sec), a
command to accelerate in the x direction from 0

(
m
s

)
to 2

(
m
s

)
in 6 seconds is applied using the trajectory

generation polynomial. At time t = 35 (sec), a step of the size 2 (N) in the y direction and −1 (N) in
the z direction is activated as a constant disturbance on the load. The disturbance is smoothed using
the second order transfer function

Hf (s) =
225

s2 + 21s+ 225
. (38)

The results are shown in Figs. 10 to 13. As can be seen in Fig. 11, at the beginning of the movement,
in the acceleration phase, a position error in the acceleration direction is increasing. However, once
settling on a certain speed, the controllers compensate for the error and eventually after a small amount
of time reaches the desired states. It is also possible to see in the middle graph that the acceleration
causes a vibrating error around θ that decays over time. Once the disturbance is activated, we can see
it causes errors in all states that again decay over time. In Fig. 12 on the middle graph we see that once
the disturbance is activated, the required forces changes accordingly to compensate and reach the new
steady state. On the bottom graph we see that before the disturbance is activated, the violations of the
separation distances are again minor and maintained under 5%. The disturbance causes a violation that
reaches around 10% and decays over time.

Figure 10: Payload position, attitude and velocity, constant velocity simulation
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Figure 11: Payload position, attitude and velocity errors, constant velocity simulation

Figure 12: Acceleration, forces commands and separation constraints, constant velocity simulation
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Figure 13: 3D trajectory, constant velocity simulation. Note that the payload dimensions looks smeared
because of the axis scales, however, the dimensions are the same as in previous simulations
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5.4 Simulation results discussion

After testing our controllers under varying conditions and disturbances we conclude that our system
provides satisfying results and is robust to constant disturbances. A few remarks should be made:

• When considering attachment points which are not at the c.g. of the quadrotors, we should expect
violations in separation distances constraints between the quadrotors and take safety interval. In
our examined cases at no simulation we reached below a separation distance of 1 (m) which is more
than twice the distance to collision, and hence we are satisfied with that result.

• Further work could be done to try and improve the transient performance when it comes to attitude
behavior of the load. During the work, faster and less vibrating (in attitude perspective) controllers
were designed, however, those were not robust against disturbances and parameter inaccuracies.
Therefore, the prescribed slower and more vibrating controller was chosen considering we want the
system to be robust against different disturbances.

• The forces that was required from each quadrotor were at all times lower than the maximum force
allowed. The cables remained taut at all times.

• Attitude control is limited to around 30◦ for φ or θ, and around 20◦ for both at the same time.
ψ is not limited. For higher values the optimization problem for our configuration considering the
constraints reaches the point where it can no longer find a feasible solution and the system loses
stability. This is also something to be aware of when considering different disturbances that might
drive the attitude of the load beyond those values. If one wishes to reach more extreme attitude
states, it is possible to consider different attachment configuration, or to loosen the optimization
constraints.

6 Conclusion

As shown in this project, the problem of controlling the multi agent system is not an easy task. It is a
highly complex nonlinear MIMO system and a lot of constraints and conditions must be met. During
this project we covered the following subjects:

• We constructed a simulation environment for the n quadrotors connected to a load system.

• An LQR controller that calculates required forces and moments such that the load will follow
desired trajectory was designed.

• We defined an optimization problem that divide the burden of the load between the available
quadrotors while maintaining certain constraints.

• We designed a geometric controller for the quadrotors such that each quadrotor will provide the
required force.

• The simulation was tested under three different scenarios with and without disturbances, the results
were analyzed and discussed.

In the literature, there has been quite a few control methods that were applied to similar problems.
In [3] a geometric controller was designed to make sure the load carried by a flock of quadrotors follows
a certain trajectory. In [4] a LQR-PID method was used in order to achieve stability of a similar system
while maintaining a certain formation of the flock and following a given trajectory. In [2] a Sliding Mode
Control (SMC) method was implemented to ensure stability of a similar system. The control structure
designed in this work was inspired from the ideas presented in the above articles. The resulted controller
was found to provide good tracking and disturbance rejection abilities. This work provides the infras-
tructure for further research in the field of terrain following. In future work we will address the problem
of incorporating the terrain following ability on a slung load carried by multi-UAV system such as the
one presented in this work.
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